Publications by authors named "D D Simonetti"

Reactive carbon capture (RCC) processes involve the capture of carbon dioxide (CO) and conversion to a value-added product using a single sorbent/reaction medium. Not only can RCC processes generate valuable byproducts that can reduce the cost of carbon capture, but RCC tends to have lower energy demand than processes involving the transfer of CO between the mediums used for capture and subsequent reactions. Saline water has been proposed as a potential medium for RCC due to it's relative abundance and low cost.

View Article and Find Full Text PDF

Commonly, quantitative gait analysis post-stroke is performed in fully equipped laboratories housing costly technologies for quantitative evaluation of a patient's movement capacity. Combining such technologies with an electromyography (EMG)-driven musculoskeletal model can estimate muscle force properties non-invasively, offering clinicians insights into motor impairment mechanisms. However, lab-constrained areas and time-demanding sensor setup and data processing limit the practicality of these technologies in routine clinical care.

View Article and Find Full Text PDF

Limestone (calcite, CaCO) is an abundant and cost-effective source of calcium oxide (CaO) for cement and lime production. However, the thermochemical decomposition of limestone (∼800 °C, 1 bar) to produce lime (CaO) results in substantial carbon dioxide (CO) emissions and energy use, i.e.

View Article and Find Full Text PDF

We demonstrate facile fabrication of highly filled, lightweight organic-inorganic composites comprising polyurethanes covalently linked with naturally occurring clinoptilolite microparticles. These polyurethane/clinoptilolite (PUC) composites are shown to mitigate particle aggregation usually observed in composites with high particle loadings and possess enhanced thermal insulation and acoustic attenuation compared with conventionally employed materials (e.g.

View Article and Find Full Text PDF

Assessing a patient's musculoskeletal function during over-ground walking is a primary objective in post-stroke rehabilitation, due to the importance of walking recovery for everyday life. However, the quantitative assessment of musculoskeletal function currently requires lab-constrained equipment, and labor-intensive analyses, which hampers assessment in standard clinical settings. The development of fully wearable systems for the online estimation of muscle-tendon forces and resulting joint torque would aid clinical assessment of motor recovery, it would enhance the detection of neuro-muscular anomalies and it would consequently enable highly personalized treatments.

View Article and Find Full Text PDF