Publications by authors named "D D Shoemaker"

Previous studies on natural samples of pampaloite (AuSbTe) revealed the crystal structure of a potentially cleavable and/or exfoliable material, while studies on natural and synthetic montbrayite (Sb-containing AuTe) claimed various chemical compositions for this low-symmetry compound. Few investigations of synthetic samples have been reported for both materials, leaving much of their chemical, thermal, and electronic characteristics unknown. Here, we investigate the stability, electronic properties, and synthesis of the gold antimony tellurides AuSbTe and AuSbTe (montbrayite).

View Article and Find Full Text PDF

Cytomegalovirus colitis most commonly affects immunocompromised patients, although it is a rare cause of gastrointestinal bleeding in immunocompetent patients. Older age, chronic disease, and critical illness are also important risk factors and may lead providers to consider the diagnosis in otherwise immunocompetent patients. Endoscopic presentation is variable and does not significantly influence outcomes.

View Article and Find Full Text PDF

Cosmic Explorer is a next-generation ground-based gravitational-wave observatory that is being designed in the 2020s and is envisioned to begin operations in the 2030s together with the Einstein Telescope in Europe. The Cosmic Explorer concept currently consists of two widely separated L-shaped observatories in the United States, one with 40 km-long arms and the other with 20 km-long arms. This order of magnitude increase in scale with respect to the LIGO-Virgo-KAGRA observatories will, together with technological improvements, deliver an order of magnitude greater astronomical reach, allowing access to gravitational waves from remnants of the first stars and opening a wide discovery aperture to the novel and unknown.

View Article and Find Full Text PDF

Boron (B)-substituted wurtzite AlN (AlBN) is a recently discovered wurtzite ferroelectric material that offers several advantages over ferroelectric HfZrO and PbZrTiO. Such benefits include a relatively low growth temperature as well as a thermally stable, and thickness-stable ferroelectric polarization; these factors are promising for the development of ferroelectric nonvolatile random-access memory (FeRAM) that are CMOS-compatible, scalable, and reliable for storing data in harsh environments. However, wurtzite ferroelectric materials may undergo exacerbated self-heating upon polarization switching relative to other ferroelectric materials; the larger energy loss is anticipated due to the higher coercive field and remanent polarization.

View Article and Find Full Text PDF