Friction is one of the leading causes of energy loss in moving parts, and understanding how roughness affects friction is of utmost importance. From creating surfaces with high friction to prevent slip and movement, to creating surfaces with low friction to minimize energy loss, roughness plays a key role. By measuring shear stresses of crosslinked elastomers on three rough surfaces of similar surface chemistry across nearly six decades of sliding velocity, we demonstrate the dominant role of adhesive frictional dissipation.
View Article and Find Full Text PDFContaminants decrease adhesive strength by interfering with substrate contact. Spider webs adhering to moths present an ideal model to investigate how natural adhesives overcome contamination because moths' sacrificial layer of scales rubs off on sticky silk, facilitating escape. However, Cyrtarachninae spiders have evolved gluey capture threads that adhere well to moths.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
June 2019
Power amplification allows animals to produce movements that exceed the physiological limits of muscle power and speed, such as the mantis shrimp's ultrafast predatory strike and the flea's jump. However, all known examples of nonhuman, muscle-driven power amplification involve anatomical structures that store energy from a single cycle of muscular contraction. Here, we describe a nonhuman example of external power amplification using a constructed device: the web of the triangle-weaver spider, , which uses energy stored in the silk threads to actively tangle prey from afar.
View Article and Find Full Text PDF