Publications by authors named "D D L Minh"

Resistance to endocrine therapies remains a major clinical hurdle in breast cancer. Mutations to estrogen receptor alpha (ERα) arise after continued therapeutic pressure. Next generation selective estrogen receptor modulators and degraders/downregulators (SERMs and SERDs) show clinical efficacy, but responses are often non-durable.

View Article and Find Full Text PDF

It has been challenging to determine how a ligand that binds to a receptor activates downstream signaling pathways and to predict the strength of signaling. The challenge is compounded by functional selectivity, in which a single ligand binding to a single receptor can activate multiple signaling pathways at different levels. Spectroscopic studies show that in the largest class of cell surface receptors, 7 transmembrane receptors (7TMRs), activation is associated with ligand-induced shifts in the equilibria of intracellular pocket conformations in the absence of transducer proteins.

View Article and Find Full Text PDF

We have developed a method that uses energy landscapes of unbound and bound ligands to compute reorganization free energies for end-point binding free-energy calculations. The method is applied to our previous simulations of fentanyl derivatives bound to the μ opioid receptor in different orientations. Whereas the mean interaction energy provides an ambiguous ranking of binding poses, interaction entropy and ligand reorganization strongly penalize geometric decoys such that native poses observed in CryoEM structures are best ranked.

View Article and Find Full Text PDF

The coronavirus main protease (MPro) plays a pivotal role in viral replication and is the target of several antivirals against SARS-CoV-2. In some species, CRCs of MPro enzymatic activity can exhibit biphasic behavior in which low ligand concentrations activate the enzyme whereas higher ones inhibit it. While this behavior has been attributed to ligand-induced dimerization, quantitative enzyme kinetics models have not been fit to it.

View Article and Find Full Text PDF

This study focuses on fabricating a hybrid structure consisting of ZnO nanorods and ZnTe nanoparticles for NO gas detection, particularly exploring the impact of light irradiation at room temperature (RT). The morphology, physical characteristics, and chemical properties of the ZnO/ZnTe hybrid structure are carefully studied under diverse analytical methods such as X-ray diffraction (XRD), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), and other measurements. The ZnO/ZnTe composite displayed an improved response toward 500 ppb NO under the blue light radiation effect.

View Article and Find Full Text PDF