This article aims to investigate the thermophysical properties of viscous nanofluid in the two-dimensional geometry of a triangular cavity containing inverted triangle, square, and rhombus obstacles with different boundary conditions. The boundary conditions of the triangular cavity are investigated in two mechanisms: 1) uniform temperature at the base of the cavity and 2) non-uniform temperature (sinusoidal function) at the base of the cavity. The finite element method was used to solve the governing equations of the viscous nanofluid flow.
View Article and Find Full Text PDFNatural convection in a square porous cavity with a partial magnetic field is investigated in this work. The magnetic field enters a part of the left wall horizontally. The horizontal walls of the cavity are thermally insulated.
View Article and Find Full Text PDFMicrobial fuel cells (MFCs) are promising for generating renewable energy from organic matter and efficient wastewater treatment. Ensuring their practical viability requires meticulous optimization and precise design. Among the critical components of MFCs, the membrane separator plays a pivotal role in segregating the anode and cathode chambers.
View Article and Find Full Text PDFThis study investigates the impact of heat radiation on magnetically-induced forced convection of nanofluid in a semi-porous channel. The research employs Akbari-Ganji's and Homotopy perturbation methods to analyze the effects of multiple parameters, including Hartmann number, Reynolds number, Eckert number, radiation parameter, and suction parameter, on the flow and heat transfer characteristics. The results demonstrate that increasing Reynolds number, suction, and radiation parameters increases temperature gradient, providing valuable insights into improving heat transfer in semi-porous channels.
View Article and Find Full Text PDFNowadays, several engineering applications and academic investigations have demonstrated the significance of heat transfers in general and mixed convection heat transfer (MCHT) in particular in cavities containing obstacles. This study's main goal is to analyze the MCHT of a nanofluid in a triangular cavity with a pentagonal barrier using magneto hydrodynamics (MHD). The cavity's-oriented walls are continuous cold temperature, whereas the bottom wall of the triangle and all pentagonal obstacle walls are kept at a constant high temperature.
View Article and Find Full Text PDF