Auger electron spectroscopy is an omnipresent experimental tool in many fields of fundamental research and applied science. The determination of the kinetic energies of the Auger electrons yields information about the element emitting the electron and its chemical environment at the time of emission. Here, we present an experimental approach to determine Auger spectra for emitter sites in the vicinity of a positive elementary charge based on electron-electron-electron and electron-electron-photon coincidence spectroscopy.
View Article and Find Full Text PDFWe studied N 1s inner-shell processes of the free base Phthalocyanine molecule, HPc, in the gas-phase. This complex organic molecule contains three different nitrogen sites defined by their covalent bonds. We identify the contribution of each site in ionized, core-shell excited or relaxed electronic states by the use of different theoretical methods.
View Article and Find Full Text PDFUnderstanding the mechanisms of X-ray radiation damage in biological systems is of prime interest in medicine (radioprotection, X-ray therapy…). Study of low-energy rays, such as soft-X rays and light ions, points to attribute their lethal effect to clusters of energy deposition by low-energy electrons. The first step, at the atomic or molecular level, is often the ionization of inner-shell electrons followed by Auger decay in an aqueous environment.
View Article and Find Full Text PDFSingle-photon multiple photoionization results from electron correlations that make this process possible beyond the independent electron approximation. To study this phenomenon experimentally, the detection in coincidence of all emitted electrons is the most direct approach. It provides the relative contribution of all possible multiple ionization processes, the energy distribution between electrons that can reveal simultaneous or sequential mechanisms, and, if possible, the angular correlations between electrons.
View Article and Find Full Text PDFThe dynamics of the electronically excited pyruvic acid (PA) and of its unimolecular decomposition upon single photon ionisation are investigated by means of a table top fs laser and VUV synchrotron radiation. The latter is coupled with photo-ion/photo-electron coincidence acquisition devices that allow the identification of the ionic products coming from state-to-state fragmentation upon ionisation. The fs-based setup provides time-resolved mass spectra with 266 nm (= 4.
View Article and Find Full Text PDF