Transpeptidases are specialized enzymes that have evolved for site-selective modification of peptides and proteins at their backbone termini. Approaches for adapting transpeptidases to catalyze side chain modifications are substantially more restricted, and typically rely on large recognition tags or require specific reaction conditions that are not easily compatible with broader applications. Here we show that the engineered asparaginyl ligase AEP1 catalyzes direct isopeptide ligation by accepting an internal 2,3-diaminopropionic acid (Dap) residue adjacent to Leu, a motif that mimics the canonical N-terminal Gly-Leu substrate.
View Article and Find Full Text PDFThe devastating impact of malaria includes significant mortality and illness worldwide. Increasing resistance of the causative parasite, Plasmodium, to existing antimalarial drugs underscores a need for additional compounds with distinct modes of action in the therapeutic development pipeline. Here we showcase peptide-drug conjugates (PDCs) as an attractive compound class, in which therapeutic or lead antimalarials are chemically conjugated to cell-penetrating peptides.
View Article and Find Full Text PDF