Publications by authors named "D Court"

Temperate phage-mediated horizontal gene transfer is a potent driver of genetic diversity in the evolution of bacteria. Most lambdoid prophages in are integrated into the chromosome with the same orientation with respect to the direction of chromosomal replication, and their location on the chromosome is far from homogeneous. To better understand these features, we studied the interplay between lysogenic and lytic states of phage lambda in both native and inverted integration orientations at the wild-type integration site as well as at other sites on the bacterial chromosome.

View Article and Find Full Text PDF
Article Synopsis
  • RexA and RexB are part of an exclusion system that stops certain bacteriophage mutants from infecting Escherichia coli cells infected with a specific lambda phage.
  • Recent studies reveal that RexA can bind to DNA independently of RexB, leaning the lambda switch towards lytic activity, but the precise molecular interactions behind this are not well-defined due to limited structural data.
  • The authors present a detailed crystal structure of the RexA dimer, showing its two-domain setup and similarities to another protein, suggesting potential conformational changes necessary for DNA binding, with further evidence from mutagenesis studies highlighting its role in phage exclusion and bistable switch modulation.
View Article and Find Full Text PDF

As the demand for bacteriophage (phage) therapy increases due to antibiotic resistance in microbial pathogens, strategies and methods for increased efficiency, large-scale phage production need to be determined. To date, very little has been published on how to establish scalable production for phages, while achieving and maintaining a high titer in an economical manner. The present work outlines a phage production strategy using an enterotoxigenic Escherichia coli-targeting phage, 'Phage75', and accounts for the following variables: infection load, multiplicity of infection, temperature, media composition, harvest time, and host bacteria.

View Article and Find Full Text PDF

The bacterial chromosome and bacterial plasmids can be engineered in vivo by homologous recombination using either PCR products or synthetic double-stranded DNA (dsDNA) or single-stranded DNA as substrates. Multiple linear dsDNA molecules can be assembled into an intact plasmid. The technology of recombineering is possible because bacteriophage-encoded recombination proteins efficiently recombine sequences with homologies as short as 35 to 50 bases.

View Article and Find Full Text PDF