2D perovskites have received great attention recently due to their structural tunability and environmental stability, making them highly promising candidates for various applications by breaking property bottlenecks that affect established materials. However, in 2D perovskites, the complicated interplay between organic spacers and inorganic slabs makes structural analysis challenging to interpret. A deeper understanding of the structure-property relationship in these systems is urgently needed to enable high-performance tunable optoelectronic devices.
View Article and Find Full Text PDFThe compositional tunability of 2D metal halide perovskites enables exploration of diverse semiconducting materials with different structural features. However, rationally tuning the 2D perovskite structures to target physical properties for specific applications remains challenging, especially for lead-free perovskites. Here, we study the effect of the interplay of the B-site (Ge, Sn, and Pb), A-site (cesium, methylammonium, and formamidinium), and spacer cations on the structure and optical properties of a new series of 2D Ruddlesden-Popper perovskites using the previously unreported spacer cation 4-bromo-2-fluorobenzylammonium (4Br2FBZ).
View Article and Find Full Text PDFJ Phys Chem C Nanomater Interfaces
November 2023
We present a study on the many-body exciton interactions in a Ruddlesden-Popper tin halide, namely, (PEA)SnI (PEA = phenylethylammonium), using coherent two-dimensional electronic spectroscopy. The optical dephasing times of the third-order polarization observed in these systems are determined by exciton many-body interactions and lattice fluctuations. We investigate the excitation-induced dephasing (EID) and observe a significant reduction of the dephasing time with increasing excitation density as compared to its lead counterpart (PEA)PbI, which we have previously reported in a separate publication [, 153, 164706].
View Article and Find Full Text PDFBandgap tunability of lead mixed halide perovskites (LMHPs) is a crucial characteristic for versatile optoelectronic applications. Nevertheless, LMHPs show the formation of iodide-rich (I-rich) phase under illumination, which destabilizes the semiconductor bandgap and impedes their exploitation. Here, it is shown that how I , photogenerated upon charge carrier trapping at iodine interstitials in LMHPs, can promote the formation of I-rich phase.
View Article and Find Full Text PDFQuantum-well (QW) hybrid organic-inorganic perovskite (HOIP) crystals, e.g., APbX (A = BA, PEA; X = Br, I), demonstrated significant potentials as scintillating materials for wide energy radiation detection compared to their individual three-dimensional (3D) counterparts, e.
View Article and Find Full Text PDF