Publications by authors named "D Comparat"

We report on laser cooling of a large fraction of positronium (Ps) in free flight by strongly saturating the 1^{3}S-2^{3}P transition with a broadband, long-pulsed 243 nm alexandrite laser. The ground state Ps cloud is produced in a magnetic and electric field-free environment. We observe two different laser-induced effects.

View Article and Find Full Text PDF

In the search for clues to the matter-antimatter puzzle, experiments with atoms or molecules play a particular role. These systems allow measurements with very high precision, as demonstrated by the unprecedented limits down to [Formula: see text] e cm on electron EDM using molecular ions, and relative measurements at the level of [Formula: see text] in spectroscopy of antihydrogen atoms. Building on these impressive measurements, new experimental directions offer potential for drastic improvements.

View Article and Find Full Text PDF

We have performed a study of several cesium oven designs. A comparison between recirculating (or sticking-wall) and collimating (or re-emitting-wall) ovens is made in order to extract the most efficient design in terms of beam brightness. Unfortunately, non-reproducible behaviors have been observed, and the most often observed output flux is similar to the sticking-wall case, which is the lowest theoretical value of the two cases, with a beam brightness close to 10 at.

View Article and Find Full Text PDF

This work presents an experimental protocol conceived to determine the vibrational distribution of barium monofluoride molecules seeded in a supersonic beam of argon. Here, as in many cases, the detection signal is related to the number of molecules by an efficiency involving several parameters that may be difficult to determine properly. In particular, this efficiency depends on the vibrational level of the detected molecules.

View Article and Find Full Text PDF

An electron optical column has been designed for High Resolution Electron Energy Loss Microscopy (HREELM). The column is composed of electron lenses and a beam separator that are placed between an electron source based on a laser excited cesium atom beam and a time-of-flight (ToF) spectrometer or a hemispherical analyzer (HSA). The instrument will be able to perform full field low energy electron imaging of surfaces with sub-micron spatial resolution and meV energy resolution necessary for the analysis of local vibrational spectra.

View Article and Find Full Text PDF