Growth rate is a key prokaryotic trait that allows for estimating fitness and understanding cell metabolism. While it has been well studied in model organisms, there is limited data on slow-growing bacteria. In particular, there is a lack of quantitative studies on Brucella species.
View Article and Find Full Text PDFShiga toxin-producing (STEC) are the main etiological agents of hemolytic uremic syndrome (HUS). Good clinical management of STEC infections and HUS depends on early, rapid, and accurate diagnosis. Here, we have developed and evaluated the first multiplex and glycoprotein-based immunochromatographic test for the detection of IgM antibodies against the O-polysaccharide of the lipopolysaccharide of O157 and O145 in human serum samples.
View Article and Find Full Text PDFBackground: Cyclic β-1,2-glucans (CβG) are bacterial cyclic homopolysaccharides with interesting biotechnological applications. These ring-shaped molecules have a hydrophilic surface that confers high solubility and a hydrophobic cavity able to include poorly soluble molecules. Several studies demonstrate that CβG and many derivatives can be applied in drug solubilization and stabilization, enantiomer separation, catalysis, synthesis of nanomaterials and even as immunomodulators, suggesting these molecules have great potential for their industrial and commercial exploitation.
View Article and Find Full Text PDFThe α-Proteobacteria belonging to Bradyrhizobium genus are microorganisms of extreme slow growth. Despite their extended use as inoculants in soybean production, their physiology remains poorly characterized. In this work, we produced quantitative data on four different isolates: B.
View Article and Find Full Text PDFMembers of the genus Brucella are the causative agents of brucellosis, a worldwide zoonosis affecting wild and domestic animals and humans. These facultative intracellular pathogens cause long-lasting chronic infections by evolving sophisticated strategies to counteract, evade, or subvert host bactericidal mechanisms in order to establish a secure replicative niche necessary for their survival. In this review, we present recent findings on selected Brucella effectors to illustrate how this pathogen modulates host cell signaling pathways to gain control of the vacuole, promote the formation of a safe intracellular replication niche, alter host cell metabolism to its advantage, and exploit various cellular pathways to ensure egress from the infected cell.
View Article and Find Full Text PDF