Publications by authors named "D Comelli"

The present study describes an innovative approach for the study of time-dependent alteration processes. It combines an advanced hyperspectral imaging (HSI) system, to collect visible reflectance and fluorescence spectral data sets sequentially, with a tailored multiblock data processing method. This enables the modeling of chemical degradation maps and the early, spatially resolved detection of dye alteration in textiles.

View Article and Find Full Text PDF

This paper accounts for the diagnostic campaign aimed at understanding the phenomenon of black stains appeared on the passepartout close to the margins of Folio 843 of Leonardo da Vinci's Codex Atlanticus. Previous studies excluded microbiological deterioration processes. The study is based on a multi-analytical approach, including non-invasive imaging measurements of the folio, micro-imaging and synchrotron spectroscopy investigations of passepartout fragments at different magnifications and spectral ranges.

View Article and Find Full Text PDF

The cultural heritage community is increasingly exploring synchrotron radiation (SR) based techniques for the study of art and archaeological objects. When considering heterogeneous and complex micro-samples, such as those from paintings, the combination of different SR X-ray techniques is often exploited to overcome the intrinsic limitations and sensitivity of the single technique. Less frequently, SR X-ray analyses are combined with SR micro-photoluminescence or micro-Fourier Transform Infrared spectroscopy, which provide complementary information on the molecular composition, offering a unique integrated analysis approach.

View Article and Find Full Text PDF

The European Synchrotron Radiation Facility (ESRF) has recently commissioned the new Extremely Brilliant Source (EBS). The gain in brightness as well as the continuous development of beamline instruments boosts the beamline performances, in particular in terms of accelerated data acquisition. This has motivated the development of new access modes as an alternative to standard proposals for access to beamtime, in particular via the "block allocation group" (BAG) mode.

View Article and Find Full Text PDF

Crystalline solids can exhibit photoluminescence when properly excited by sufficiently energetic light radiation. Following excitation, different radiative and non-radiative recombination pathways can occur that are informative of the energetic structure of the material as well as of the presence of crystal defects and impurities. Usually, the characterization of the optical emission of crystalline materials is achieved through the study of emission spectra as a function of the excitation wavelength.

View Article and Find Full Text PDF