The extraction of electron-liquid phase cross-sections (surface and bulk) is proposed through the measurement of (differential) energy loss spectra for electrons scattered from a liquid micro-jet. The signature physical elements of the scattering processes on the energy loss spectra are highlighted using a Monte Carlo simulation technique, originally developed for simulating electron transport in liquids. Machine learning techniques are applied to the simulated electron energy loss spectra, to invert the data and extract the cross-sections.
View Article and Find Full Text PDFWe have calculated the background energy (V) for positrons in noble gases with an ab initio potential and the Wigner-Seitz (WS) ansatz. In contrast to the general pseudo-potential approach, we have used accurate ab initio potentials for the positron-atom interaction. The ansatz includes an assumed form of the potential, resulting from an average over fluid atoms, and we propose four different options for this.
View Article and Find Full Text PDFWe review experimental and theoretical cross sections for electron transport in α-tetrahydrofurfuryl alcohol (THFA) and, in doing so, propose a plausible complete set. To assess the accuracy and self-consistency of our proposed set, we use the pulsed-Townsend technique to measure drift velocities, longitudinal diffusion coefficients, and effective Townsend first ionization coefficients for electron swarms in admixtures of THFA in argon, across a range of density-reduced electric fields from 1 to 450 Td. These measurements are then compared to simulated values derived from our proposed set using a multi-term solution of Boltzmann's equation.
View Article and Find Full Text PDFWe investigate the global dynamics of a general Kermack-McKendrick-type epidemic model formulated in terms of a system of renewal equations. Specifically, we consider a renewal model for which both the force of infection and the infected removal rates are arbitrary functions of the infection age, [Formula: see text], and use the direct Lyapunov method to establish the global asymptotic stability of the equilibrium solutions. In particular, we show that the basic reproduction number, [Formula: see text], represents a sharp threshold parameter such that for [Formula: see text], the infection-free equilibrium is globally asymptotically stable; whereas the endemic equilibrium becomes globally asymptotically stable when [Formula: see text], i.
View Article and Find Full Text PDFWe derive third-order transport coefficients of skewness for a phase-space kinetic model that considers the processes of scattering collisions, trapping, detrapping and recombination losses. The resulting expression for the skewness tensor provides an extension to Fick's law which is in turn applied to yield a corresponding generalised advection-diffusion-skewness equation. A physical interpretation of trap-induced skewness is presented and used to describe an observed negative skewness due to traps.
View Article and Find Full Text PDF