The P2X(7) receptor is known for the cytotoxic activity because of its ability to cause opening of non-selective pores in the plasma membrane and activate apoptotic caspases. A key factor of P2X(7)-dependent cytotoxicity is the massive intracellular Ca(2+) increase triggered by its activation. Here we show that P2X(7) transfection increased the ability of the endoplasmic reticulum to accumulate, store, and release Ca(2+).
View Article and Find Full Text PDFJunctate is an integral sarco(endo)plasmic reticulum protein expressed in many tissues including heart and skeletal muscle. Because of its localization and biochemical characteristics, junctate is deemed to participate in the regulation of the intracellular Ca2+ concentration. However, its physiological function in muscle cells has not been investigated yet.
View Article and Find Full Text PDFThe voltage-dependent anion channel (VDAC) of the outer mitochondrial membrane mediates metabolic flow, Ca(2+), and cell death signaling between the endoplasmic reticulum (ER) and mitochondrial networks. We demonstrate that VDAC1 is physically linked to the endoplasmic reticulum Ca(2+)-release channel inositol 1,4,5-trisphosphate receptor (IP(3)R) through the molecular chaperone glucose-regulated protein 75 (grp75). Functional interaction between the channels was shown by the recombinant expression of the ligand-binding domain of the IP(3)R on the ER or mitochondrial surface, which directly enhanced Ca(2+) accumulation in mitochondria.
View Article and Find Full Text PDFMalignant hyperthermia (MH) is a pharmacogenetic disease triggered by volatile anesthetics and succinylcholine in genetically predisposed individuals. The underlying feature of MH is a hypersensitivity of the calcium release machinery of the sarcoplasmic reticulum, and in many cases this is a result of point mutations in the skeletal muscle ryanodine receptor calcium release channel (RYR1). RYR1 is mainly expressed in skeletal muscle, but a recent report demonstrated the existence of this isoform in human B-lymphocytes.
View Article and Find Full Text PDF1. Haloperidol is a drug used in the management of several psychotic disorders and its use has been linked to Neuroleptic Malignant Syndrome. In the present study we have investigated the effect of a commercial preparation of haloperidol, Serenase, on skeletal muscle sarcoplasmic reticulum.
View Article and Find Full Text PDF