Background: The prenatal and early-life periods pose a crucial neurodevelopmental window whereby disruptions to the intestinal microbiota and the developing brain may have adverse impacts. As antibiotics affect the human intestinal microbiome, it follows that early-life antibiotic exposure may be associated with later-life psychiatric or neurocognitive outcomes.
Aims: To explore the association between early-life (in utero and early childhood (age 0-2 years)) antibiotic exposure and the subsequent risk of psychiatric and neurocognitive outcomes.
Background And Aims: Glutamate plays a crucial role in cognition, learning, and mood regulation, with studies suggesting glutamatergic dysfunction in chronic schizophrenia. This study explored glutamate levels in the occipital cortex (OCC) and cognitive function in ultra-treatment resistant schizophrenia (uTRS) compared to healthy controls.
Methods: Fifteen uTRS participants and 19 healthy controls underwent 3T proton magnetic resonance spectroscopy (H-MRS) to measure glutamate levels in the OCC.