Publications by authors named "D Castell"

Coordination networks (CNs) that undergo guest-induced structural transformations are of topical interest thanks to their potential utility in separations and storage applications. Herein, we report a double diamondoid () topology CN, [Ni(bimpz)(bdc)(HO)] or (Hbdc = 1,4-benzenedicarboxylic acid, bimpz = 3,6-bis(imidazol-1-yl)pyridazine), that undergoes structural transformations induced by C8 isomers, i.e.

View Article and Find Full Text PDF

Porous coordination networks (PCNs) sustained by inorganic anions that serve as linker ligands can offer high selectivity toward specific gases or vapors in gas mixtures. Such inorganic anions are best exemplified by electron-rich fluorinated anions, e.g.

View Article and Find Full Text PDF

Compared to rigid physisorbents, switching coordination networks that reversibly transform between closed (non-porous) and open (porous) phases offer promise for gas/vapour storage and separation owing to their improved working capacity and desirable thermal management properties. We recently introduced a coordination network, X-dmp-1-Co, which exhibits switching enabled by transient porosity. The resulting "open" phases are generated at threshold pressures even though they are conventionally non-porous.

View Article and Find Full Text PDF

Herein, we introduce a new square lattice topology coordination network, sql-(1,3-bib)(ndc)-Ni, with three types of connection and detail its gas and vapour induced phase transformations. Exposure to humidity resulted in an S-shaped isotherm profile, suggesting potential utility of such materials as desiccants.

View Article and Find Full Text PDF

In this work, we present the first metal-organic framework (MOF) platform with a self-penetrated double diamondoid () topology that exhibits switching between closed (nonporous) and open (porous) phases induced by exposure to gases. A crystal engineering strategy, linker ligand substitution, was used to control gas sorption properties for CO and C3 gases. Specifically, bimbz (1,4-bis(imidazol-1-yl)benzene) in the coordination network ([Ni(bimbz)(bdc)(HO)], Hbdc = 1,4-benzenedicarboxylic acid) was replaced by bimpz (3,6-bis(imidazol-1-yl)pyridazine) in ([Ni(bimpz)(bdc)(HO)]).

View Article and Find Full Text PDF