ACS Appl Mater Interfaces
November 2022
Next-generation Li-ion batteries must guarantee improved durability, quality, reliability, and safety to satisfy the stringent technical requirements of crucial sectors such as e-mobility. One breakthrough strategy to overcome the degradation phenomena affecting the battery performance is the development of advanced materials integrating smart functionalities, such as self-healing units. Herein, we propose a gel electrolyte based on a uniform and highly cross-linked network, hosting a high amount of liquid electrolyte, with multiple advantages: (i) autonomous, fast self-healing, and a promising PF-scavenging role; (ii) solid-like mechanical stability despite the large fraction of entrapped liquid; and (iii) good Li transport.
View Article and Find Full Text PDFBraz J Anesthesiol
January 2023
An experimental method exploiting the capacitive response of most materials is here revised. The procedure called the "Voltage Ramp Method" (VRM) is based on applying proper voltage ramp cycles over time and measuring electrical current intensity flowing through the material sample. In the case of an ideal capacitor, a current plateau should be easily measured, and the capacitance value precisely determined.
View Article and Find Full Text PDFThe transition to a circular economy vision must handle the increasing request of metals required to satisfy the battery industry; this can be obtained by recycling and feeding back secondary raw materials recovered through proper waste management. Here, a novel and green proof-of-concept was developed, based on deep eutectic solvents (DESs) to fully and easily recover valuable metals from various cathode active materials, including LiMn O , LiNi Mn O , and LiNi Co O . DES composed of choline chloride and lactic acid could leach Li, Mn, Co, and Ni, achieving efficiency of 100 % under much milder conditions with respect to the previous literature.
View Article and Find Full Text PDFThe cellular uptake of nanoparticles (NPs) represents a critical step in nanomedicine and a crucial point for understanding the interaction of nanomaterials with biological systems. No specific mechanism of uptake has been identified so far, as the NPs are generally incorporated by the cells through one of the few well-known endocytotic mechanisms. Here, an alternative internalization route mediated by microvilli adhesion is demonstrated.
View Article and Find Full Text PDF