The availability of thin-film lithium niobate on insulator (LNOI) and advances in processing have led to the emergence of fully integrated LiNbO electro-optic devices. Yet to date, LiNbO photonic integrated circuits have mostly been fabricated using non-standard etching techniques and partially etched waveguides, that lack the reproducibility achieved in silicon photonics. Widespread application of thin-film LiNbO requires a reliable solution with precise lithographic control.
View Article and Find Full Text PDFEarly works and recent advances in thin-film lithium niobate (LiNbO) on insulator have enabled low-loss photonic integrated circuits, modulators with improved half-wave voltage, electro-optic frequency combs and on-chip electro-optic devices, with applications ranging from microwave photonics to microwave-to-optical quantum interfaces. Although recent advances have demonstrated tunable integrated lasers based on LiNbO (refs. ), the full potential of this platform to demonstrate frequency-agile, narrow-linewidth integrated lasers has not been achieved.
View Article and Find Full Text PDFAn important building block for on-chip photonic applications is a scaled emitter. Whispering gallery mode cavities based on III-Vs on Si allow for small device footprints and lasing with low thresholds. However, multimodal emission and wavelength stability over a wider range of temperature can be challenging.
View Article and Find Full Text PDFElectrically actuated optomechanical resonators provide a route to quantum-coherent, bidirectional conversion of microwave and optical photons. Such devices could enable optical interconnection of quantum computers based on qubits operating at microwave frequencies. Here we present a platform for microwave-to-optical conversion comprising a photonic crystal cavity made of single-crystal, piezoelectric gallium phosphide integrated on pre-fabricated niobium circuits on an intrinsic silicon substrate.
View Article and Find Full Text PDFA key component for optical on-chip communication is an efficient light source. However, to enable low energy per bit communication and local integration with Si CMOS, devices need to be further scaled down. In this work, we fabricate micro- and nanolasers of different shapes in InP by direct wafer bonding on Si.
View Article and Find Full Text PDF