The Neotropical brown stink bug, is one of the most important stink bug pests in leguminous plants in South America. RNAi and CRISPR/Cas9 are important and useful tools in functional genomics, as well as in the future development of new integrated pest management strategies. Here, we explore the use of these technologies as complementing functional genomic tools in .
View Article and Find Full Text PDFIn insects, the identity of body segments is controlled by homeotic genes and the knockdown of these genes during embryogenesis can lead to an abnormal development and/or atypical phenotypes. The main goal of this study was to investigate the involvement of labial (lab), deformed (dfd), sex comb reduced (scr), extradenticle (exd) and proboscipedia (pb) in rostrum development in the Neotropical brown stink bug Euschistus heros, using parental RNAi (pRNAi). To achieve this objective, 10-days-old adult females were first microinjected with double-stranded RNAs (dsRNA) targeting these five genes.
View Article and Find Full Text PDFOver the past few years, the use of RNA interference (RNAi) for insect pest management has attracted considerable interest in academia and industry as a pest-specific and environment-friendly strategy for pest control. For the success of this technique, the presence of core RNAi genes and a functional silencing machinery is essential. Therefore, the aim of this study was to test whether the Neotropical brown stinkbug Euschistus heros has the main RNAi core genes and whether the supply of dsRNA could generate an efficient gene silencing response.
View Article and Find Full Text PDFInsecticidal gene silencing by RNA interference (RNAi) involves a post-transcriptional mechanism with great potential for insect control. Here, we aim to summarize the progress on RNAi research toward control of insect pests in the Neotropical region and discuss factors determining its efficacy and prospects for pest management. We include an overview of the available RNAi information for Neotropical pests in the Lepidoptera, Coleoptera, Diptera, and Hemiptera orders.
View Article and Find Full Text PDFSince the discovery of RNA interference (RNAi), scientists have made significant progress towards the development of this unique technology for crop protection. The RNAi mechanism works at the mRNA level by exploiting a sequence-dependent mode of action with high target specificity due to the design of complementary dsRNA molecules, allowing growers to target pests more precisely compared to conventional agrochemicals. The delivery of RNAi through transgenic plants is now a reality with some products currently in the market.
View Article and Find Full Text PDF