Range shifts are of great importance as a response for species facing climate change. In the light of current ocean-surface warming, many studies have focused on the capacity of marine ectotherms to shift their ranges latitudinally. Bathymetric range shifts offer an important alternative, and may be the sole option for species already at high latitudes or those within enclosed seas; yet relevant data are scant.
View Article and Find Full Text PDFTemperature is one of the main abiotic factors influencing the distribution and abundance of organisms. In the Rhône River Valley, populations of the crustacean Gammarus pulex are distributed along a 5 °C thermal gradient from the North to the South of the valley. In this present work, we investigated the heat shock response of G.
View Article and Find Full Text PDFComp Biochem Physiol A Mol Integr Physiol
March 2015
Fluctuations in the stress level of an organism are expressed in behavioural and molecular changes that can affect its ecology and survival. Our knowledge of thermal adaptations in deep-sea organisms is very limited, and this study investigates the critical thermal maximum (CTmax) and the heat-shock response (HSR) in the deep-sea crab Chaceon affinis commonly found in waters of the North East Atlantic. A mild but significant HSR in C.
View Article and Find Full Text PDFComp Biochem Physiol A Mol Integr Physiol
February 2014
Latitudinal thermal gradients offer the possibility of comparing the current performance of populations of a single species living in contrasting thermal conditions. The Rhône River Valley (France) presents a 5°C thermal gradient corresponding to the increase in temperature predicted by climatic models (IPCC, 2007). We studied the thermal tolerance to rising temperature (from 15 to 30°C) of five populations of the key species Gammarus pulex living either in the North (i.
View Article and Find Full Text PDFWe investigated the tolerance of adult specimens of the shallow-water shrimp Palaemonetes varians to sustained high hydrostatic pressure (10 MPa) across its thermal tolerance window (from 5 to 27 °C) using both behavioural (survival and activity) and molecular (hsp70 gene expression) approaches. To our knowledge, this paper reports the longest elevated hydrostatic pressure exposures ever performed on a shallow-water marine organism. Behavioural analysis showed a 100% survival rate of P.
View Article and Find Full Text PDF