Publications by authors named "D C Peabody"

Extraction of nucleic acids (NAs) is critical for many methods in molecular biology and bioanalytical chemistry. NA extraction has been extensively studied and optimized for a wide range of applications and its importance to society has significantly increased. The COVID-19 pandemic highlighted the importance of early and efficient NA testing, for which NA extraction is a critical analytical step prior to the detection by methods like polymerase chain reaction.

View Article and Find Full Text PDF

Antibody complementarity determining regions (CDRs) participate in antigen recognition, but not all participate equally in antigen binding. Here we describe a technique for discovering strong, specific binding partners to defined motifs within the CDRs of chimeric, engineered antibodies using affinity selection and counter-selection of epitopes displayed on bacteriophage MS2-based virus-like particles (VLPs). As an example, we show how this technique can be used to identify families of VLPs that interact with antibodies displaying the CDRs encoded by the germline precursor of a broadly neutralizing monoclonal antibody against HIV-1.

View Article and Find Full Text PDF

Maternal antibodies are passively transferred to the fetus via the placenta during gestation and can play an important role in protecting the newborn from infection. For example, in malaria-endemic regions, maternal antibodies likely provide substantial protection against malaria in the first 6 months of life. However, circulating maternal antibodies can also interfere with vaccine efficacy.

View Article and Find Full Text PDF

Zika virus (ZIKV), a mosquito-borne pathogen, is associated with neurological complications in adults and congenital abnormalities in newborns. There are no vaccines or treatments for ZIKV infection. Understanding the specificity of natural antibody responses to ZIKV could help inform vaccine efforts.

View Article and Find Full Text PDF

The ligand-binding surface of the B cell receptor (BCR) is formed by encoded and non-encoded antigen complementarity determining regions (CDRs). Genetically reproducible or 'public' antibodies can arise when the encoded CDRs play deterministic roles in antigen recognition, notably within human broadly neutralizing antibodies against HIV and influenza virus. We sought to exploit this by engineering virus-like-particle (VLP) vaccines that harbor multivalent affinity against gene-encoded moieties of the BCR antigen binding site.

View Article and Find Full Text PDF