This review presents recent research advances in measuring native point defects in ZnO nanostructures, establishing how these defects affect nanoscale electronic properties, and developing new techniques to manipulate these defects to control nano- and micro- wire electronic properties. From spatially-resolved cathodoluminescence spectroscopy, we now know that electrically-active native point defects are present inside, as well as at the surfaces of, ZnO and other semiconductor nanostructures. These defects within nanowires and at their metal interfaces can dominate electrical contact properties, yet they are sensitive to manipulation by chemical interactions, energy beams, as well as applied electrical fields.
View Article and Find Full Text PDFThe conductivity σ, quantum-based magnetoconductivity Δσ = σ(B) - σ(0), and Hall coefficient R (= µ/σ) of degenerate, homoepitaxial, (010) Si-doped β-GaO, have been measured over a temperature range T = 9-320 K and magnetic field range B = 0-10 kG. With ten atoms in the unit cell, the normal-mode phonon structure of β-GaO is very complex, with optical-phonon energies ranging from kT ~ 20-100 meV. For heavily doped samples, the phonon spectrum is further modified by doping disorder.
View Article and Find Full Text PDFA correction to this article has been published and is linked from the HTML version of this paper. The error has been fixed in the paper.
View Article and Find Full Text PDFWe investigate the optical signature of the interface in a single MgZnO/ZnO heterojunction, which exhibits two orders of magnitude lower resistivity and 10 times higher electron mobility compared with the MgZnO/AlO film grown under the same conditions. These impressive transport properties are attributed to increased mobility of electrons at the MgZnO/ZnO heterojunction interface. Depth-resolved cathodoluminescence and photoluminescence studies reveal a 3.
View Article and Find Full Text PDFThe spatial distribution of defect related deep band emission has been studied in zinc oxide (ZnO) nano- and microwires using depth resolved cathodoluminescence spectroscopy (DRCLS) in a hyperspectral imaging (HSI) mode within a UHV scanning electron microscope (SEM). Three sets of wires were examined that had been grown by pulsed laser deposition or vapor transport methods and ranged in diameter from 200 nm-2.7 μm.
View Article and Find Full Text PDF