Publications by authors named "D C Lagatta"

A series of 2-nitroimidazole-1,2,3-triazole sulfonamide hybrid analogs were designed using medicinal chemistry approaches, such as bioisosterism, molecular hybridization, Topliss tree decision, and Craig plot. A total of 24 compounds were synthesized via click chemistry in satisfactory yields. Overall, analogs 15 a-x exhibited relevant in vitro anti-trypanosomatid activity against amastigote forms of T.

View Article and Find Full Text PDF

Background And Purpose: The dorsal hippocampus (dHIP) is pivotal for learning, memory, and defensive responses. Transient receptor potential vanilloid type 1 (TRPV1) receptors in the dHIP modulate contextual fear conditioning by triggering a cascade involving glutamate release, nitric oxide (NO) formation and cyclic guanosine monophosphate (cGMP) production. The present study investigated the involvement of dHIP TRPV1 receptors and their interaction with the glutamate/NO/cGMP signalling pathway in modulating the expression of contextual fear conditioning (CFC).

View Article and Find Full Text PDF

The study aimed to evaluate the antithrombotic action of pulp oil (AAPO) in natura, in an in vitro experimental model. AAPO was obtained by solvent extraction, and its chemical characterization was performed by gas chromatography coupled to a mass spectrometer (GC-MS). In vitro toxicity was evaluated with the Trypan Blue exclusion test and in vivo by the model.

View Article and Find Full Text PDF

Alzheimer's disease (AD) is a neurodegenerative disorder caused by accumulation of amyloid-β oligomers (AβO) in the brain, neuroinflammation, oxidative stress, and cognitive decline. Grandisin, a tetrahydrofuran neolignan, exhibits relevant anti-inflammatory and antioxidant properties. Interestingly, grandisin-based compounds were shown to prevent AβO-induced neuronal death in vitro.

View Article and Find Full Text PDF

Caveolin-1 is an integral membrane protein that is known to acquire a number of posttranslational modifications upon trafficking to the plasma membrane. In particular, caveolin-1 is palmitoylated at three cysteine residues (C133, C143, and C156) located within the C-terminal domain of the protein which could have structural and topological implications. Herein, a reliable preparation of full-length S-alkylated caveolin-1, which closely mimics the palmitoylation observed in vivo, is described.

View Article and Find Full Text PDF