Publications by authors named "D C Kundaliya"

Pixelated color converters are envisioned to achieve full-color high-resolution display through down conversion of blue/ultraviolet(UV) micro-LEDs. Quantum dots (QDs) are promising narrow-band converters of high quantum efficiency and brightness enabling saturated colors with wide color gamut in displays. Here we demonstrate high-resolution pixelated red and green QDs/thiol-ene photo-polymer converters (single pixel down to 6 µm; converters array of 21 µm pixel, 30 µm pitch and sub 10 µm thickness) patterned through projection lithography.

View Article and Find Full Text PDF

Anisotropic growth of magnetite (Fe3O4) nanoparticles is achieved in a hydrothermal growth process using hexamine to play a dual role of oxide forming and directing agent. The samples are characterized by X-ray diffraction, scanning electron microscopy, high resolution transmission electron microscopy, squid magnetometry, ferromagnetic resonance technique, diffuse reflectance spectroscopy and Mössbauer spectroscopy, which collectively establish the formation of Fe3O4 phase. Anisotropic structures such as nanorods and nanotubules are revealed and these are shown to exhibit good humidity sensing properties.

View Article and Find Full Text PDF

We report on the synthesis of iron oxide nanoparticles below 100 degrees C by a simple chemical protocol. The uniqueness of the method lies in the use of Ferrous ammonium sulphate (in conjugation with FeCl3) which helps maintain the stability of Fe2+ state in the reaction sequence thereby controlling the phase formation. Hexamine was added as the stabilizer.

View Article and Find Full Text PDF

Quantum dots (QDs) and magnetic nanoparticles (MPs) are of interest for biological imaging, drug targeting, and bioconjugation because of their unique optoelectronic and magnetic properties, respectively. To provide for water solubility and biocompatibility, QDs and MPs were encapsulated within a silica shell using a reverse microemulsion synthesis. The resulting SiO2/MP-QD nanocomposite particles present a unique combination of magnetic and optical properties.

View Article and Find Full Text PDF

The recent discovery of ferromagnetism above room temperature in low-temperature-processed MnO(2)-ZnO has generated significant interest. Using suitably designed bulk and thin-film studies, we demonstrate that the ferromagnetism in this system originates in a metastable phase rather than by carrier-induced interaction between separated Mn atoms in ZnO. The ferromagnetism persists up to approximately 980 K, and further heating transforms the metastable phase and kills the ferromagnetism.

View Article and Find Full Text PDF