Publications by authors named "D C Heimbrook"

Purpose: Antitumor clinical activity has been demonstrated for the MDM2 antagonist RG7112, but patient tolerability for the necessary daily dosing was poor. Here, utilizing RG7388, a second-generation nutlin with superior selectivity and potency, we determine the feasibility of intermittent dosing to guide the selection of initial phase I scheduling regimens.

Experimental Design: A pharmacokinetic-pharmacodynamic (PKPD) model was developed on the basis of preclinical data to determine alternative dosing schedule requirements for optimal RG7388-induced antitumor activity.

View Article and Find Full Text PDF

As a powerful research tool, siRNA's therapeutic and target validation utility with leukemia cells and long-term gene knockdown is severely restricted by the lack of omnipotent, safe, stable, and convenient delivery. Here, we detail our discovery of siRNA-containing lipid nanoparticles (LNPs) able to effectively transfect several leukemia and difficult-to-transfect adherent cell lines also providing in vivo delivery to mouse spleen and bone marrow tissues through tail-vein administration. We disclose a series of novel structurally related lipids accounting for the superior transfection ability, and reveal a correlation between expression of Caveolins and successful transfection.

View Article and Find Full Text PDF

A high percentage of patients with BRAF(V600E) mutant melanomas respond to the selective RAF inhibitor vemurafenib (RG7204, PLX4032) but resistance eventually emerges. To better understand the mechanisms of resistance, we used chronic selection to establish BRAF(V600E) melanoma clones with acquired resistance to vemurafenib. These clones retained the V600E mutation and no second-site mutations were identified in the BRAF coding sequence.

View Article and Find Full Text PDF

The protein kinase BRAF is a key component of the RAS-RAF signaling pathway which plays an important role in regulating cell proliferation, differentiation, and survival. Mutations in BRAF at codon 600 promote catalytic activity and are associated with 8% of all human (solid) tumors, including 8% to 10% of colorectal cancers (CRC). Here, we report the preclinical characterization of vemurafenib (RG7204; PLX4032; RO5185426), a first-in-class, specific small molecule inhibitor of BRAF(V600E) in BRAF-mutated CRC cell lines and tumor xenograft models.

View Article and Find Full Text PDF

Although targeting the Ras/Raf/MEK pathway remains a promising anticancer strategy, mitogen-activated protein/extracellular signal-regulated kinase (ERK) kinase (MEK) inhibitors in clinical development are likely to be limited in their ability to produce durable clinical responses due to the emergence of acquired drug resistance. To identify potential mechanisms of such resistance, we established MEK inhibitor-resistant clones of human HT-29 colon cancer cells (HT-29R cells) that harbor the B-RafV600E mutation. HT-29R cells were specifically resistant to MEK inhibition in vitro and in vivo, with drug-induced elevation of MEK/ERK and their downstream targets primarily accountable for drug resistance.

View Article and Find Full Text PDF