Objective: Event capture in clinical trials is resource-intensive, and electronic medical records (EMRs) offer a potential solution. This study develops algorithms for EMR-based death and hospitalization capture and compares them with traditional event capture methods.
Materials And Methods: We compared the effectiveness of EMR-based event capture and site-captured events adjudicated by a clinical endpoint committee in the multi-center INfluenza Vaccine to Effectively Stop cardio Thoracic Events and Decompensated heart failure (INVESTED) trial for participants from the Veterans Affairs healthcare system.
Stud Health Technol Inform
January 2024
In this manuscript, we outline our developed version of a Learning Health System (LHS) in oncology implemented at the Department of Veterans Affairs (VA). Transferring healthcare into an LHS framework has been one of the spearpoints of VA's Central Office and given the general lack of evidence generated through randomized control clinical trials to guide medical decisions in oncology, this domain is one of the most suitable for this change. We describe our technical solution, which includes a large real-world data repository, a data science and algorithm development framework, and the mechanism by which results are brought back to the clinic and to the patient.
View Article and Find Full Text PDFClinical trial enrollment is impeded by the significant time burden placed on research coordinators screening eligible patients. With 50,000 new cancer cases every year, the Veterans Health Administration (VHA) has made increased access for Veterans to high-quality clinical trials a priority. To aid in this effort, we worked with research coordinators to build the MPACT (Matching Patients to Accelerate Clinical Trials) platform with a goal of improving efficiency in the screening process.
View Article and Find Full Text PDFHigh-resolution whole slide image scans of histopathology slides have been widely used in recent years for prediction in cancer. However, in some cases, clinical informatics practitioners may only have access to low-resolution snapshots of histopathology slides, not high-resolution scans. We evaluated strategies for training neural network prognostic models in non-small cell lung cancer (NSCLC) based on low-resolution snapshots, using data from the Veterans Affairs Precision Oncology Data Repository.
View Article and Find Full Text PDFCold Spring Harb Mol Case Stud
December 2023
Veterans are at an increased risk for prostate cancer, a disease with extraordinary clinical and molecular heterogeneity, compared with the general population. However, little is known about the underlying molecular heterogeneity within the veteran population and its impact on patient management and treatment. Using clinical and targeted tumor sequencing data from the National Veterans Affairs health system, we conducted a retrospective cohort study on 45 patients with advanced prostate cancer in the Veterans Precision Oncology Data Commons (VPODC), most of whom were metastatic castration-resistant.
View Article and Find Full Text PDF