Publications by authors named "D C Assmann"

Article Synopsis
  • Fungal pathogens, particularly smut fungi, use specialized molecules called effectors for infection, with smut fungi having smaller genomes and secretomes compared to other plant pathogens.
  • A study analyzed the secretomes of 11 Ustilaginaceae species, identifying 53 core effector protein groups conserved in this family.
  • Testing revealed that 20 out of 53 mutant strains lacking specific effectors showed reduced virulence, leading to the identification of seven new core effectors that contribute to pathogenicity.
View Article and Find Full Text PDF

The easyPACId (easy Promoter Activation and Compound Identification) approach is focused on the targeted activation of natural product biosynthetic gene clusters (BGCs) encoding non-ribosomal peptide synthetases (NRPS), polyketide synthases (PKS), NRPS-PKS hybrids, or other BGC classes. It was applied to entomopathogenic bacteria of the genera Xenorhabdus and Photorhabdus by exchanging the natural promoter of desired BGCs against the L-arabinose inducible PBAD promoter in ∆hfq mutants of the respective strains. The crude (culture) extracts of the cultivated easyPACId mutants are enriched with the single compound or compound class and can be tested directly against various target organisms without further purification of the produced natural products.

View Article and Find Full Text PDF

Plant pathogenic fungi colonizing living plant tissue secrete a cocktail of effector proteins to suppress plant immunity and reprogramme host cells. Although many of these effectors function inside host cells, delivery systems used by pathogenic bacteria to translocate effectors into host cells have not been detected in fungi. Here, we show that five unrelated effectors and two membrane proteins from Ustilago maydis, a biotrophic fungus causing smut disease in corn, form a stable protein complex.

View Article and Find Full Text PDF

Background: Excessive tidal volume, respiratory rate, and positive end-expiratory pressure (PEEP) are all potential causes of ventilator-induced lung injury, and all contribute to a single variable: the mechanical power. The authors aimed to determine whether high tidal volume or high respiratory rate or high PEEP at iso-mechanical power produce similar or different ventilator-induced lung injury.

Methods: Three ventilatory strategies-high tidal volume (twice baseline functional residual capacity), high respiratory rate (40 bpm), and high PEEP (25 cm H2O)-were each applied at two levels of mechanical power (15 and 30 J/min) for 48 h in six groups of seven healthy female piglets (weight: 24.

View Article and Find Full Text PDF
Article Synopsis
  • Wildfires release a significant amount of black carbon (BC) particles into the atmosphere, which can reach the lowermost stratosphere (LMS) and contribute to climate change through strong radiative forcing.
  • During a 14-month study on a passenger flight between Europe and North America, researchers detected frequent biomass burning (BB) plumes that affected 16 out of 160 flight hours in the LMS, with BC mass concentrations remarkably higher than normal background levels.
  • The study also noted that BC particles in these plumes were larger and had thicker coatings compared to background particles, indicating that wildfires can cause substantial local heating in the LMS and impact regional climate radiative forcing.
View Article and Find Full Text PDF