Formation of chondromimetic human mesenchymal stem cells (hMSCs) condensations typically required culture in defined environments. In addition, extended culture in differentiation media over several weeks is usually necessary prior to implantation, which is costly, time consuming and delays clinical treatment. Here, this study reports on immediately implantable core/shell microgels with a high-density hMSC-laden core and rapidly degradable hydrogel shell.
View Article and Find Full Text PDFBackground: Treponeme-Associated Hoof Disease (TAHD) is a polybacterial, multifactorial disease affecting free-ranging wild elk (Cervus canadensis) in the Pacific Northwest. Previous studies have indicated a bacterial etiology similar to digital dermatitis in livestock, including isolation of Treponema species from lesions. The lesions appear to progress rapidly from ulcerative areas in the interdigital space or along the coronary band to severe, ulcerative, necrotic, proliferative lesions under-running the hoof wall, perforating the sole, and contributing to hoof elongation, deformity, and overgrowth.
View Article and Find Full Text PDFMannheimia haemolytica is the principal agent contributing to bovine respiratory disease and can form biofilms with increased resistance to antibiotic treatment and host immune defenses. To investigate the molecular mechanisms underlying M. haemolytica biofilm formation, transcriptomic analyses were performed with mRNAs sequenced from planktonic and biofilm cultures of pathogenic serotypes 1 (St 1; strain D153) and St 6 (strain D174), and St 2 (strain D35).
View Article and Find Full Text PDF