In the scope of 100% in-line quality control and real-time release of pharmaceutical tablets, the authors present a flexible inspection module for in-line tablet analysis with integrated multipoint near-infrared (NIR) spectroscopy and 3D microwave resonance technology (3D MRT). Via an industrial case study on Diclofenac Sodium tablets, the abilities of this versatile process analytical technology (PAT) tool are presented. It is demonstrated that the combination of Diclofenac concentration prediction via NIR spectroscopy and mass prediction via 3D MRT allow to estimate the dosage of each individual tablet.
View Article and Find Full Text PDFIn-line measurements of low dose blends in the feed frame of a tablet press were performed for API concentration levels as low as 0.10% w/w. The proposed methodology utilizes the advanced sampling capabilities of a Spatially Resolved Near-Infrared (SR-NIR) probe to develop Partial Least-Squares calibration models.
View Article and Find Full Text PDFNear-infrared chemical imaging (NIR-CI) is an emerging tool for process monitoring because it combines the chemical selectivity of vibrational spectroscopy with spatial information. Whereas traditional near-infrared spectroscopy is an attractive technique for water content determination and solid-state investigation of lyophilized products, chemical imaging opens up possibilities for assessing the homogeneity of these critical quality attributes (CQAs) throughout the entire product. In this contribution, we aim to evaluate NIR-CI as a process analytical technology (PAT) tool for at-line inspection of continuously freeze-dried pharmaceutical unit doses based on spin freezing.
View Article and Find Full Text PDFCalibration transfer or standardisation aims at creating a uniform spectral response on different spectroscopic instruments or under varying conditions, without requiring a full recalibration for each situation. In the current study, this strategy is applied to construct at-line multivariate calibration models and consequently employ them in-line in a continuous industrial production line, using the same spectrometer. Firstly, quantitative multivariate models are constructed at-line at laboratory scale for predicting the concentration of two main ingredients in hard surface cleaners.
View Article and Find Full Text PDFCalibration transfer of partial least squares (PLS) quantification models is established between two Raman spectrometers located at two liquid detergent production plants. As full recalibration of existing calibration models is time-consuming, labour-intensive and costly, it is investigated whether the use of mathematical correction methods requiring only a handful of standardization samples can overcome the dissimilarities in spectral response observed between both measurement systems. Univariate and multivariate standardization approaches are investigated, ranging from simple slope/bias correction (SBC), local centring (LC) and single wavelength standardization (SWS) to more complex direct standardization (DS) and piecewise direct standardization (PDS).
View Article and Find Full Text PDF