Background: Gaucher disease is a sphingolipidosis caused by a deficiency of the enzyme glucocerebrosidase. Macrophages transform into pathogenic Gaucher cells following the phagocytosis of red blood cells (RBCs) and subsequent accumulation of glucosylceramide. Enhanced erythrophagocytosis is one feature of the disease indicating abnormal macrophage-RBC interactions.
View Article and Find Full Text PDFHuman red blood cells (RBCs) have a normal life span of 120 days in vivo and might be primed in vitro to die in response to apoptotic stimuli through a caspase-independent pathway. It is well known that, in vivo, aging RBCs externalize phosphatidylserine residues but is unknown whether these cells express active caspases at this stage. We isolated RBCs expressing phosphatidylserine on their surface from human blood by applying an original method of affinity chromatography using annexin-V fixed on gelatin or on magnetic beads.
View Article and Find Full Text PDFBackground: The aim of this study was to investigate by flow cytometry cellular viability and apoptosis of human chondrocytes isolated from osteoarthritic cartilage and to correlate replicative senescence with apoptosis of these cells.
Methods: To understand the mechanisms underlying the process of cell death in cartilage destruction, we investigated by flow cytometry cellular viability (Cell viability calcein-AM assay) and apoptosis (Light scattering properties of chondrocytes, study of chondrocyte death using Annexin-V-FITC and propidium iodide double-labeling, caspase-3 activity determination) of human chondrocytes isolated from osteoarthritic and nonosteoarthritic cartilage. Senescent cells were characterized using the senescence-associated-beta-galactosidase marker (SA-beta-Gal marker) by staining with chromogenic substrate (X-Gal) to produce blue coloration of SA-beta-Gal-positive cells and microscopy analysis.
Transfus Clin Biol
October 2007
Unlabelled: In light of recent results on the mechanism of programmed cell death of human red blood cells (RBC), the aim of the present study was to solve the enigma of the rapid clearance of transfused RBCs.
Materials And Methods: We describe new criteria of RBC viability founded on the use of flow cytometry. They were applied, in association with the classical ones: ATP and hemolysis measurements, to RBCs stored in SAGM medium for 42 days.