Publications by authors named "D Bottomly"

Genomic profiles and prognostic biomarkers in patients with acute myeloid leukemia (AML) from ancestry-diverse populations are underexplored. We analyzed the exomes and transcriptomes of 100 patients with AML with genomically confirmed African ancestry (Black; Alliance) and compared their somatic mutation frequencies with those of 323 self-reported white patients with AML, 55% of whom had genomically confirmed European ancestry (white; BeatAML). Here we find that 73% of 162 gene mutations recurrent in Black patients, including a hitherto unreported PHIP alteration detected in 7% of patients, were found in one white patient or not detected.

View Article and Find Full Text PDF

Upregulation of the Wilms' tumour 1 (WT1) gene is common in acute myeloid leukaemia (AML) and is associated with poor prognosis. WT1 generates 12 primary transcripts through different translation initiation sites and alternative splicing. The short WT1 transcripts express abundantly in primary leukaemia samples.

View Article and Find Full Text PDF

Immuno-oncology involves the study of approaches which harness the patient's immune system to fight malignancies. Immuno-oncology, as with every other biomedical and clinical research field as well as clinical operations, is in the midst of technological revolutions, which vastly increase the amount of available data. Recent advances in artificial intelligence and machine learning (AI/ML) have received much attention in terms of their potential to harness available data to improve insights and outcomes in many areas including immuno-oncology.

View Article and Find Full Text PDF

Identifying and targeting microenvironment-driven pathways that are active across acute myeloid leukemia (AML) genetic subtypes should allow the development of more broadly effective therapies. The proinflammatory cytokine interleukin-1β (IL-1β) is abundant in the AML microenvironment and promotes leukemic growth. Through RNA-sequencing analysis, we identify that IL-1β-upregulated ASF1B (antisilencing function-1B), a histone chaperone, in AML progenitors compared with healthy progenitors.

View Article and Find Full Text PDF
Article Synopsis
  • Emerging research highlights how factors in the leukemia microenvironment protect cancer cells from treatments and contribute to drug resistance, signaling the need for targeted therapies in acute myeloid leukemia (AML).
  • A study involving around 300 AML patient samples found that higher levels of the cytokine CCL2 correlate with reduced effectiveness of MEK inhibitors, leading to further investigations into the mechanisms behind this resistance.
  • The findings suggest that targeting both CCL2 and the MEK pathway can improve treatment responses in AML, proposing a combination therapy as a promising strategy to overcome drug resistance and enhance patient outcomes.
View Article and Find Full Text PDF