AKR1C3 is an upregulated enzyme in prostate and other cancers; in addition to regulating hormone synthesis, this enzyme is thought to play a role in the aggressiveness of tumors and in the defense against drugs. We here used an unbiased method to discover new potent AKR1C3 inhibitors: through an AI-based virtual drug screen, compound was identified as a potent and selective enzymatic inhibitor able to translate this activity into a pronounced antiproliferative effect in the 22RV1 prostate cancer cell model. As other known AKR1C3 inhibitors, compound determined a significantly increased activity of abiraterone, a drug approved for advanced prostate cancer.
View Article and Find Full Text PDFCancer remains a primary cause of death globally, and effective treatments are still limited. While chemotherapy has notably enhanced survival rates, it brings about numerous side effects. Consequently, the ongoing challenge persists in developing potent anti-cancer agents with minimal toxicity.
View Article and Find Full Text PDFOver the years, human dihydroorotate dehydrogenase (hDHODH), which is a key player in the de novo pyrimidine-biosynthesis pathway, has been targeted in the treatment of several conditions, including autoimmune disorders and acute myelogenous leukaemia, as well as in host-targeted antiviral therapy. A molecular exploration of its inhibitor-binding behaviours yielded promising candidates for innovative drug design. A detailed description of the enzymatic pharmacophore drove the decoration of well-established inhibitory scaffolds, thus gaining further in vitro and in vivo efficacy.
View Article and Find Full Text PDFThe assignment of structure by tandem mass spectrometry (MS/MS) relies on the interpretation of the fragmentation behavior of gas-phase ions. Mass spectra were acquired for a series of heterocyclic mimetics of acidic amino acids and a related series of nitrile amino acids. All amino acids were readily protonated or deprotonated by electrospray ionization (ESI), and distinctive fragmentation processes were observed when the ions were subjected to collision-induced dissociation (CID).
View Article and Find Full Text PDFAKR1C3 is an enzyme that is overexpressed in several types of radiotherapy- and chemotherapy-resistant cancers. Despite AKR1C3 is a validated target for drug development, no inhibitor has been approved for clinical use. In this manuscript, we describe our study of a new series of potent AKR1C3-targeting 3-hydroxybenzoisoxazole based inhibitors that display high selectivity over the AKR1C2 isoform and low micromolar activity in inhibiting 22Rv1 prostate cancer cell proliferation.
View Article and Find Full Text PDF