Publications by authors named "D Borgis"

We investigate the orientational properties of a homogeneous and inhomogeneous tetrahedral four-patch fluid (Bol-Kern-Frenkel model). Using integral equations, either (i) HNC or (ii) a modified HNC scheme with a simulation input, the full orientational dependence of pair and direct correlation functions is determined. Density functionals for the inhomogeneous problem are constructed via two different methods.

View Article and Find Full Text PDF

We re-examine the problem of the dielectric response of highly polar liquids such as water in confinement between two walls using simple two-variable density functional theory involving number and polarisation densities. In the longitudinal polarisation case where a perturbing field is applied perpendicularly to the walls, we show that the notion of the local dielectric constant, although ill-defined at a microscopic level, makes sense when coarse-graining over the typical size of a particle is introduced. The approach makes it possible to study the effective dielectric response of thin liquid films of various thicknesses in connection with the recent experiments of Fumagalli , [, 2018, , 1339-1342], and to discuss the notion of the interfacial dielectric constant.

View Article and Find Full Text PDF

The viability and effectiveness of replacing an ensemble of embedded solute calculations by a single calculation using an average description of the solvent environment are evaluated. This work explores the fluctuations of the average description of the system obtained in two ways: from calculations on an ensemble of geometries and from an average environment constructed from the same ensemble. To this end, classical molecular dynamics simulations of a rigid acetone solute in SPCE water are performed in order to generate an ensemble of solvent environments.

View Article and Find Full Text PDF

This paper assesses the ability of molecular density functional theory to predict efficiently and accurately the hydration free energies of molecular solutes and the surrounding microscopic water structure. A wide range of solutes were investigated, including hydrophobes, water as a solute, and the FreeSolv database containing 642 drug-like molecules having a variety of shapes and sizes. The usual second-order approximation of the theory is corrected by a third-order, angular-independent bridge functional.

View Article and Find Full Text PDF

Solvation effects can have a tremendous influence on chemical reactions. However, precise quantum chemistry calculations are most often done either in vacuum neglecting the role of the solvent or using continuum solvent model ignoring its molecular nature. We propose a new method coupling a quantum description of the solute using electronic density functional theory with a classical grand-canonical treatment of the solvent using molecular density functional theory.

View Article and Find Full Text PDF