Introduction: Amorolfine 5% lacquer is an established topical treatment for fungal infection of the nails. The success of topical therapy for onychomycosis depends on whether the permeated drug concentration in the deep nail bed is retained above the effective antifungal minimum inhibitory concentration (MIC). We compared the penetration profile of amorolfine and a new topical formula of terbinafine in human mycotic toenails using matrix-assisted laser desorption ionization mass spectrometry imaging-Fourier transform ion cyclotron resonance (MALDI-FTICR) imaging.
View Article and Find Full Text PDFIntroduction: Onychomycosis is a fungal infection of the nails that can be challenging to treat. Here, matrix-assisted laser desorption ionization-Fourier transform ion cyclotron resonance (MALDI-FTICR) imaging was applied to the quantitative analysis of the penetration profile of the antifungal compound, amorolfine, in human mycotic toenails. The amorolfine profile was compared with those of three other antifungals, ciclopirox, naftifine, and tioconazole.
View Article and Find Full Text PDFBackground: Lactic acid is a common active ingredient in many topical skincare products; however, measuring its delivery into the skin is challenging due to the presence of a large level of endogenous lactic acid. In this study, matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI-MSI) was used to quantitatively and qualitatively measure the delivery of lactic acid into the skin from a range of topical skincare products.
Materials And Methods: Porcine skin samples were treated with various skincare products containing lactic acid.
Cancers (Basel)
February 2023
The authors wish to make the following corrections to this paper [...
View Article and Find Full Text PDFAs tumors are very heterogeneous, investigating the penetration and concentration of an anticancer drug in different histological regions of a tumor is key to evaluate the efficacy, to improve the pharmacokinetics/pharmacodynamics (PK/PD) relationship evaluation, and to confirm the adequacy of the dose regimen. Quantitative mass spectrometry imaging (QMSI) allows for the determination of the tissue distribution of drugs, metabolites, and biomarkers to support quick and precise evaluation of drug efficacy and safety in a single experiment. QMSI was applied in a preoperative window-of-opportunity (WoO) study of the inhibitor of apoptosis protein antagonist xevinapant (Debio 1143) in patients with resectable squamous cell carcinoma of the head and neck (SCCHN).
View Article and Find Full Text PDF