The International Fusion Materials Irradiation Facility (IFMIF) linear IFMIF prototype accelerator injector dedicated to high intensity deuteron beam production has been designed, built, and tested at CEA/Saclay between 2008 and 2012. After the completion of the acceptance tests at Saclay, the injector has been fully sent to Japan. The re-assembly of the injector has been performed between March and May 2014.
View Article and Find Full Text PDFIn the framework of the ITER broader approach, the International Fusion Materials Irradiation Facility (IFMIF) deuteron accelerator (2 × 125 mA at 40 MeV) is an irradiation tool dedicated to high neutron flux production for future nuclear plant material studies. During the validation phase, the Linear IFMIF Prototype Accelerator (LIPAc) machine will be tested on the Rokkasho site in Japan. This demonstrator aims to produce 125 mA/9 MeV deuteron beam.
View Article and Find Full Text PDFIn the framework of the IFMIF-EVEDA project (International Fusion Materials Irradiation Facility-Engineering Validation and Engineering Design Activities), CEA∕IRFU is in charge of the design, construction, and characterization of the 140 mA continuous deuteron injector, including the source and the low energy beam line. The electron cyclotron resonance ion source which operates at 2.45 GHz is associated with a 4-electrode extraction system in order to minimize beam divergence at the source exit.
View Article and Find Full Text PDFIn the framework of the International Fusion Materials Irradiation Facility-Engineering Validation and Engineering Design Activities (IFMIF-EVEDA) project, CEA/IRFU is in charge of the design and realization of the 140 mA cw deuteron Injector. The electron cyclotron resonance ion source operates at 2.45 GHz and a 4 electrode extraction system has been chosen.
View Article and Find Full Text PDFThe isotopic composition (long-term average) of solar flare (SF) Ne has been determined by three isotope correlation techniques applied to data measured on chemically etched pyroxene separates prepared from the Kapoeta meteorite, which is known to contain implanted solar gases. The SF 20Ne/22Ne ratio obtained is 11.6 +/- 0.
View Article and Find Full Text PDF