Publications by authors named "D Blondin"

Evaluation of the current status, significance and availability of multiparametric prostate MRI and MRI-guided biopsy in Germany.A voluntary web-based questionnaire with 26 distinct items was emailed to members of the German Radiological Society (DRG) and the Professional Association of German Radiologists (BDR). The questions referred to personal qualification, acquisition, quality, and management of prostate MRI, and assessment of the importance of the method.

View Article and Find Full Text PDF

Until two decades ago, brown adipose tissue (BAT) was studied primarily as a thermogenic organ of small rodents in the context of cold adaptation. The discovery of functional human BAT has opened new opportunities to understand its physiological role in energy balance and therapeutic applications for metabolic disorders. Significantly, the role of BAT extends far beyond thermogenesis, including glucose and lipid homeostasis, by releasing mediators that communicate with other cells and organs.

View Article and Find Full Text PDF
Article Synopsis
  • The review examines how changing sleep timing impacts blood sugar control, pointing out mixed evidence from previous studies.
  • It included 14 studies involving 159 adults with either normal or increased weight, showing varying quality and significant effects on glycaemic outcomes.
  • The study concludes that delaying sleep can negatively affect blood sugar levels, emphasizing the need for more controlled research on sleep's impact, along with related lifestyle factors.
View Article and Find Full Text PDF

Long-chain fatty acids (FAs) are the major substrates fueling brown adipose tissue (BAT) thermogenesis. Investigation of mouse models has previously called into question the contribution of brown adipocyte intracellular lipolysis to cold-induced non-shivering thermogenesis. Here, we determined the role of the lipolytic enzymes, adipose triglyceride lipase (ATGL) and hormone-sensitive lipase (HSL), in BAT thermogenesis.

View Article and Find Full Text PDF

BACKGROUNDIn type 1 diabetes (T1D), impaired insulin sensitivity may contribute to the development of diabetic kidney disease (DKD) through alterations in kidney oxidative metabolism.METHODSYoung adults with T1D (n = 30) and healthy controls (HCs) (n = 20) underwent hyperinsulinemic-euglycemic clamp studies, MRI, 11C-acetate PET, kidney biopsies, single-cell RNA-Seq, and spatial metabolomics to assess this relationship.RESULTSParticipants with T1D had significantly higher glomerular basement membrane (GBM) thickness compared with HCs.

View Article and Find Full Text PDF