Publications by authors named "D Bicknell"

Human colorectal cancer cell lines are used widely to investigate tumor biology, experimental therapy, and biomarkers. However, to what extent these established cell lines represent and maintain the genetic diversity of primary cancers is uncertain. In this study, we profiled 70 colorectal cancer cell lines for mutations and DNA copy number by whole-exome sequencing and SNP microarray analyses, respectively.

View Article and Find Full Text PDF

CDX1 is a transcription factor that plays a key role in intestinal development and differentiation. However, the downstream targets of CDX1 are less well defined than those of its close homologue, CDX2. We report here the identification of downstream targets of CDX1 using microarray gene-expression analysis and other approaches.

View Article and Find Full Text PDF

1,2-Indanedione belongs to a class of compounds which have demonstrated great potential in the processing of latent prints, particularly in the area of fluorescence. However, variability in results achieved worldwide has precluded it from being used extensively. In order to isolate the cause of this variability, various components of the formulation were analyzed, including purity level of the indanedione, type of carrier solvent, and the use of ZnCl(2) both as a secondary application and incorporated into the reagent.

View Article and Find Full Text PDF

Background: The Wnt signalling pathway directs aspects of embryogenesis and is thought to contribute to maintenance of certain stem cell populations. Disruption of the pathway has been observed in many different tumour types. In bowel, stomach, and endometrial cancer, this is usually due to mutation of genes encoding Wnt pathway components APC or beta-catenin.

View Article and Find Full Text PDF

The distribution of carcinoembryonic antigen (CEA) in colorectal cancer (CRC) differs from that in normal colorectal tissue, being found on all borders of the cell membrane and hence enabling access to intravenous antibody, making CEA a good target for antibody-based therapy. The distinctive anti-CEA antibody, PR1A3, binds only membrane-bound CEA. Humanised PR1A3 (hPR1A3) was assessed both in vitro cytotoxicity and binding assays with colorectal cancer cell lines expressing varying levels of CEA.

View Article and Find Full Text PDF