Strongly-correlated transition-metal oxides are widely known for their various exotic phenomena. This is exemplified by rare-earth nickelates such as LaNiO, which possess intimate interconnections between their electronic, spin, and lattice degrees of freedom. Their properties can be further enhanced by pairing them in hybrid heterostructures, which can lead to hidden phases and emergent phenomena.
View Article and Find Full Text PDFHeterostructures from complex oxides allow one to combine various electronic and magnetic orders as to induce new quantum states. A prominent example is the coupling between superconducting and magnetic orders in multilayers from high- cuprates and manganites. A key role is played here by the interfacial CuO layer whose distinct properties remain to be fully understood.
View Article and Find Full Text PDFIn high-temperature cuprate superconductors, stripe order refers broadly to a coupled spin and charge modulation with a commensuration of eight and four lattice units, respectively. How this stripe order evolves across optimal doping remains a controversial question. Here we present a systematic resonant inelastic x-ray scattering study of weak charge correlations in LaSrCuO and LaEuSrCuO.
View Article and Find Full Text PDFWe use resonant inelastic x-ray scattering to probe the propagation of plasmons in the electron-doped cuprate superconductor Sr_{0.9}La_{0.1}CuO_{2}.
View Article and Find Full Text PDFWe report on the magnetic properties of Dy atoms adsorbed on the (001) surface of SrTiO. X-ray magnetic circular dichroism reveals slow relaxation of the Dy magnetization on a time scale of about 800 s at 2.5 K, unusually associated with an easy-plane magnetic anisotropy.
View Article and Find Full Text PDF