Introduction: Epigenetic modifications have emerged as key contributors to the enduring behavioral, molecular and epigenetic neuroadaptations during withdrawal from chronic alcohol exposure. The present study investigated the long-term consequences of chronic alcohol exposure on spatial working memory (WM) and associated changes of transcriptionally repressive histone H3 lysine 9 dimethylation (H3K9me) in the prefrontal cortex (PFC).
Methods: Male C57BL/6 mice were allowed free access to either 12% (v/v) ethanol for 5 months followed by a 3-week abstinence period or water.
Introduction: The hippocampus and striatum have dissociable roles in memory and are necessary for spatial and procedural/cued learning, respectively. Emotionally charged, stressful events promote the use of striatal- over hippocampus-dependent learning through the activation of the amygdala. An emerging hypothesis suggests that chronic consumption of addictive drugs similarly disrupt spatial/declarative memory while facilitating striatum-dependent associative learning.
View Article and Find Full Text PDFThe microbiota-gut-brain axis is important in anxiety-depressive disorders. These conditions are associated with dysbiosis of the intestinal microbiota, intestinal hyperpermeability and an increase in circulating markers of inflammation and oxidative stress. They are also associated with a deregulation of the glutamine-glutamate-γ-aminobutyric acid cycle, with impairment of the excitatory/inhibitory balance in the brain.
View Article and Find Full Text PDFPersistent regional glucocorticoid (GC) dysregulation in alcohol-withdrawn subjects emerges as a key factor responsible for protracted molecular and neural alterations associated with long-term cognitive dysfunction. Regional brain concentrations of corticosterone vary independently from plasma concentrations in alcohol-withdrawn subjects, which may account for the treatment of alcohol withdrawal-induced persistent pathology. Thus, from a pharmacological point of view, a main issue remains to determine the relative efficacy of compounds targeting the GC receptors to attenuate or suppress the long-lasting persistence of brain regional GC dysfunctions in abstinent alcoholics, as well as persistent changes of neural plasticity.
View Article and Find Full Text PDFExposure to prolonged, unpredictable stress leads to glucocorticoids-mediated long-lasting neuroendocrine abnormalities associated with emotional and cognitive impairments. Excessive levels of serum glucocorticoids (cortisol in humans, corticosterone in rodents) contribute notably to deficits in working memory (WM), a task which heavily relies on functional interactions between the medial prefrontal cortex (PFC) and the dorsal hippocampus (dHPC). However, it is unknown whether stress-induced increases in plasma corticosterone mirror corticosterone levels in specific brain regions critical for WM.
View Article and Find Full Text PDF