NOMAD is a spectrometer suite on board the ESA/Roscosmos ExoMars Trace Gas Orbiter, which launched in March 2016. NOMAD consists of two infrared channels and one ultraviolet and visible channel, allowing the instrument to perform observations quasi-constantly, by taking nadir measurements at the day- and night-side, and during solar occultations. Here, in part 2 of a linked study, we describe the design, manufacturing, and testing of the ultraviolet and visible spectrometer channel called UVIS.
View Article and Find Full Text PDFAs commercial space flights have become feasible and long-term extraterrestrial missions are planned, it is imperative that the impact of space travel and the space environment on human physiology be thoroughly characterized. Scrutinizing the effects of potentially detrimental factors such as ionizing radiation and microgravity at the cellular and tissue level demands adequate visualization technology. Advanced light microscopy (ALM) is the leading tool for non-destructive structural and functional investigation of static as well as dynamic biological systems.
View Article and Find Full Text PDFWe present a new optical deflection tomography method that takes advantage of the phase-shifting schlieren. The reconstruction algorithm is based on filtered backprojection. The instrument is well adapted for three-dimensional imaging of spatially sparse objects exhibiting large refractive index variations.
View Article and Find Full Text PDFBy use of a highly sensitive method for measuring slight variations in birefringence it is shown here that a strong reversible correlation exists between rat tail tendon birefringence and temperature. This phenomenon is totally different from the loss of birefringence that results from a denaturation process. Below the threshold temperature leading to denaturation, an increase in temperature is systematically accompanied by a reversible increase in birefringence (0.
View Article and Find Full Text PDFWe present what we believe to be a new digital holographic imaging method that is able to determine simultaneously the distributions of intensity, phase, and polarization state at the surface of a specimen on the basis of a single image acquisition. Two reference waves with orthogonal polarization states interfere with the object wave to create a hologram that is recorded on a CCD camera. Two wave fronts, one for each perpendicular polarization state, are numerically reconstructed in intensity and phase.
View Article and Find Full Text PDF