Potato virus X (PVX) vectors expressing the Arabidopsis thaliana FLOWERING LOCUS T (FT) or tomato FT ortholog SINGLE-FLOWER TRUSS (SFT) shortened the generation time in tomato due to accelerated tomato flowering and ripening by 14-21 d, and caused a 2-3-fold increase in the number of flowers and fruits, compared with non-infected or empty vector-infected plants. The Arabidopsis FT was more effective than the tomato orthologue SFT and there was no alteration of the flower or fruit morphology. The virus was not transmitted to the next generation; therefore viral vectors with expression of a heterologous FT will be a useful approach to speed breeding in tomato and other species.
View Article and Find Full Text PDFMy research career started with an ambition to work out how genes are regulated in plants. I tried out various experimental systems-artichoke tissue culture in Edinburgh; soybean root nodules in Montreal; soybean hypocotyls in Athens, Georgia; and cereal aleurones in Cambridge-but eventually I discovered plant viruses. Viral satellite RNAs were my first interest, but I then explored transgenic and natural disease resistance and was led by curiosity into topics beyond virology, including RNA silencing, epigenetics, and more recently, genome evolution.
View Article and Find Full Text PDFBackground: Hybridization is associated with the activation of transposable elements and changes in the patterns of gene expression leading to phenotypic changes. However, the underlying mechanisms are not well understood.
Results: Here, we describe the changes to the gene expression in interspecific Solanum hybrids that are associated with small RNAs derived from endogenous (para)retroviruses (EPRV).