Publications by authors named "D Basavaraja"

The quest for novel antimicrobials is critical due to emerging resistance by new microorganism strains. In these circumstances, we designed and synthesized a series of β-aminothiochromones by employing an aziridines ring-opening strategy to discover antimicrobial agents that are effective against multidrug-resistant (MDR) bacteria. Structures of the compounds [3(a-m) and 3a(a-o)] were well characterized and confirmed by the spectroscopic, analytical and single crystal X-ray analysis.

View Article and Find Full Text PDF

An efficient, straightforward, and one-pot synthesis of biologically relevant spiro-dihydropyridine oxindoles was described readily available isatin, malononitrile, allenoate, and amines. The metal/organocatalyst-free, EtN-mediated reaction proceeds cascade spiro-cyclization of generated Knoevenagel/aza-Michael adducts. The reaction has great flexibility over electron-rich and electron-poor substituents affording desired products in good to excellent yields.

View Article and Find Full Text PDF

An effort has been made to understand the nucleate and the rapid film boiling phenomena under the influence of an electric field using a molecular viewpoint. The behavior of water molecules with a solid copper surface during the film boiling process in the presence of an electric field of different intensities has been studied. The molecular reasoning behind the suppression of the Leidenfrost phenomenon upon application of a uniform electric field along the heating substrate is established.

View Article and Find Full Text PDF

Base assisted divergent reactivity of isatins and allenoates has been achieved, which afforded diastereoselective spirofuran oxindoles and γ-functionalized allenoates. The DBU mediated Morita-Baylis-Hillman (MBH) reaction followed by the cascade annulation through the stabilized β-ammonium enolate intermediate led to the spiro-framework, wherein DABCO furnished the γ-functionalized allenoates. The protocol offers access to biologically relevant functionalized oxindole scaffolds with an excellent substrate scope under mild reaction conditions.

View Article and Find Full Text PDF

Advanced glycation end products (AGEs) are implicated to be the key players in most of the diabetic complications. The AGE's interfere with the proteins heterogeneously, thereby rendering denaturation and the consequent loss of function and accumulation. Thus, a novel natural product inspired indeno[2,1-c]pyridinone (4a-4ad) molecular templates with AGE's trapping potential was designed through scaffold hopping approach and synthesized via facile two-step synthetic route.

View Article and Find Full Text PDF