Publications by authors named "D Barbour"

Background:  Mass casualty incident (MCI) training effectively increases trainees' knowledge and confidence when implemented in a live, in-person setting. In-person MCI training is resource-intensive, but virtual MCI training models are an alternative with similar effectiveness at a lesser cost. However, most of these validated virtual options are based on high-tech virtual reality (VR) programs.

View Article and Find Full Text PDF

Recent advances in nonparametric contrast sensitivity function (CSF) estimation have yielded a new tradeoff between accuracy and efficiency not available to classical parametric estimators. An additional advantage of this new framework is the ability to independently tune multiple aspects of the estimator to seek further improvements. Machine learning CSF estimation with Gaussian processes allows for design optimization in the kernel, acquisition function, and underlying task representation, to name a few.

View Article and Find Full Text PDF

Computational audiology (CA) has grown over the last few years with the improvement of computing power and the growth of machine learning (ML) models. There are today several audiogram databases which have been used to improve the accuracy of CA models as well as reduce testing time and diagnostic complexity. However, these CA models have mainly been trained on single populations.

View Article and Find Full Text PDF

Recent advances in nonparametric Contrast Sensitivity Function (CSF) estimation have yielded a new tradeoff between accuracy and efficiency not available to classical parametric estimators. An additional advantage of this new framework is the ability to independently tune multiple aspects of the estimator to seek further improvements. Machine Learning CSF (MLCSF) estimation with Gaussian processes allows for design optimization in the kernel, acquisition function and underlying task representation, to name a few.

View Article and Find Full Text PDF

Multidimensional psychometric functions can typically be estimated nonparametrically for greater accuracy or parametrically for greater efficiency. By recasting the estimation problem from regression to classification, however, powerful machine learning tools can be leveraged to provide an adjustable balance between accuracy and efficiency. Contrast sensitivity functions (CSFs) are behaviorally estimated curves that provide insight into both peripheral and central visual function.

View Article and Find Full Text PDF