Publications by authors named "D Barbone"

Three-dimensional (3D) models are acquiring importance in cancer research due to their ability to mimic multiple features of the tumor microenvironment more accurately than standard monolayer two-dimensional (2D) cultures. Several groups, including our laboratory, are now accumulating evidence that autophagy in solid tumors is also better represented in 3D than in 2D. Here we detail how we generate 3D models, both in vitro multicellular spheroids generated from cell lines and ex vivo tumor fragment spheroids generated from tumor samples, and how autophagy can be measured in 3D cultures.

View Article and Find Full Text PDF

Understanding the role of autophagy in cancer has been limited by the inability to measure this dynamic process in formalin-fixed tissue. We considered that 3-dimensional models including ex vivo tumor, such as we have developed for studying mesothelioma, would provide valuable insights. Using these models, in which we could use lysosomal inhibitors to measure the autophagic flux, we sought a marker of autophagy that would be valid in formalin-fixed tumor and be used to assess the role of autophagy in patient outcome.

View Article and Find Full Text PDF

To investigate the underlying causes of chemoresistance in malignant pleural mesothelioma, we have studied mesothelioma cell lines as 3D spheroids, which acquire increased chemoresistance compared to 2D monolayers. We asked whether the gene expression of 3D spheroids would reveal mechanisms of resistance. To address this, we measured gene expression of three mesothelioma cell lines, M28, REN and VAMT, grown as 2D monolayers and 3D spheroids.

View Article and Find Full Text PDF

Malignant pleural mesothelioma is a highly chemoresistant solid tumor. We have studied this apoptotic resistance using in vitro and ex vivo three-dimensional models, which acquire a high level of chemoresistance that can be reduced by PI3K/mTOR inhibitors. Here, we investigate the activity of GDC-0980, a novel dual PI3K/mTOR inhibitor, which has been proposed to be effective in mesothelioma.

View Article and Find Full Text PDF

Malignant pleural mesothelioma (MPM) originates in most of the cases from chronic inflammation of the mesothelium due to exposure to asbestos fibers. Given the limited effect of chemotherapy, a big effort is being made to find new treatment options. The PI3K/mTOR pathway was reported to be upregulated in MPM.

View Article and Find Full Text PDF