Excited states in ^{10}B were populated with the ^{10}B(p,p^{'}γ)^{10}B^{*} reaction at 8.5 MeV and their γ decay was investigated via coincidence γ-ray spectroscopy. The emitted γ rays were measured using large-volume LaBr_{3}:Ce and CeBr_{3} detectors placed in anti-Compton shields.
View Article and Find Full Text PDFWe have designed and constructed a high-energy γ-ray source for detector characterisation and calibration. The source is a composite type based on a plutonium-beryllium neutron emitter embedded in a paraffin moderator, which is homogeneously mixed with nickel powder. The 9 MeV γ-ray source produces approximately 450 photons per second in 4π when 2.
View Article and Find Full Text PDFThere is an increasing challenge to prevent illicit drug smuggling across borders and seaports. However, the existing techniques in-and-of-themselves are not sufficient to identify the illicit drugs rapidly and accurately. In the present study, combining nuclear resonance fluorescence (NRF) spectroscopy and the element (or isotope) ratio approach, we present a novel inspection method that can simultaneously reveal the elemental (or isotopic) composition of the illicit drugs, such as widely abused methamphetamine, cocaine, heroin, ketamine and morphine.
View Article and Find Full Text PDFHere we present an investigation of a plutonium-beryllium neutron source available at the Horia Hulubei National Institute of Physics and Nuclear Engineering, Romania, to be used for detector characterization during the implementation of the Extreme Light Infrastructure - Nuclear Physics project. Using several different techniques and instruments, we have measured the isotopic composition for plutonium to be 75% Pu and 24% Pu, with a minor contribution from other isotopes. Furthermore, we have measured the source activity as of November 20th 2019 to be 2.
View Article and Find Full Text PDF