Publications by authors named "D B Sattelle"

Article Synopsis
  • A transmembrane thioredoxin (TMX3) facilitates the functional expression of insect nicotinic acetylcholine receptors (nAChRs) in frog oocytes, with RIC-3 and UNC-50 acting as regulators.
  • RIC-3 has various mRNA splicing patterns, but its influence on neonicotinoid sensitivity in beneficial insects, like honeybees, is not well understood.
  • A specific RIC-3 variant found in honeybee thoracic ganglia enhances acetylcholine response at low levels while suppressing it at high levels, affecting responses to neonicotinoids based on the nAChR subunit composition.
View Article and Find Full Text PDF

With the spread of resistance to long-established insecticides targeting malaria vectors, understanding the actions of compounds newly identified for vector control is essential. With new commercial vector-control products containing neonicotinoids under development, we investigate the actions of 6 neonicotinoids (imidacloprid, thiacloprid, clothianidin, dinotefuran, nitenpyram and acetamiprid) on 13 nicotinic acetylcholine receptor (nAChR) subtypes produced by expression of combinations of the Ag1, Ag2, Ag3, Ag8 and Ag1 subunits in oocytes, the orthologues of which we have previously shown to be important in neonicotinoid actions. The presence of the Ag2 subunit reduces neonicotinoid affinity for the mosquito nAChRs, whereas the Ag3 subunit increases it.

View Article and Find Full Text PDF

Insecticide resistance is a serious threat to our ability to control mosquito vectors which transmit pathogens including malaria parasites and arboviruses. Understanding the underlying mechanisms is an essential first step in tackling the challenges presented by resistance. This study aimed to functionally characterise the carboxylesterase, CCEae3A, the elevated expression of which has been implicated in temephos resistance in Aedes aegypti and Aedes albopictus larvae.

View Article and Find Full Text PDF

Hundreds of millions of people worldwide are infected with the whipworm Trichuris trichiura. Novel treatments are urgently needed as current drugs, such as albendazole, have relatively low efficacy. We have investigated whether drugs approved for other human diseases could be repurposed as novel anti-whipworm drugs.

View Article and Find Full Text PDF

The anthelmintic paraherquamide A acts selectively on the nematode L-type nicotinic acetylcholine receptors (nAChRs), but the mechanism of its selectivity is unknown. This study targeted the basis of paraherquamide A selectivity by determining an X-ray crystal structure of the acetylcholine binding protein (AChBP), a surrogate nAChR ligand-binding domain, complexed with the compound and by measuring its actions on wild-type and mutant nematodes and functionally expressed nAChRs. Paraherquamide A showed a higher efficacy for the levamisole-sensitive [L-type (UNC-38/UNC-29/UNC-63/LEV-1/LEV-8)] nAChR than the nicotine-sensitive [N-type (ACR-16)] nAChR, a result consistent with in vivo studies on wild-type worms and worms with mutations in subunits of these two classes of receptors.

View Article and Find Full Text PDF