The immune response to Mycobacterium tuberculosis infection (Mtb) is the formation of unique lesions, called granulomas. How well these granulomas form and function is a key issue that might explain why individuals experience different disease outcomes. The spatial structures of these granulomas are not well understood.
View Article and Find Full Text PDFThe immune response to Mycobacterium tuberculosis (Mtb) infection is the formation of multicellular lesions, or granolomas, in the lung of the individual. However, the structure of the granulomas and the spatial distribution of the immune cells within is not well understood. In this paper we develop a mathematical model investigating the early and initial immune response to Mtb.
View Article and Find Full Text PDFBull Math Biol
January 2001
The tumour suppressor gene, p53, plays an important role in tumour development. Under low levels of oxygen (hypoxia), cells expressing wild-type p53 undergo programmed cell death (apoptosis), whereas cells expressing mutations in the p53 gene may survive and express angiogenic growth factors that stimulate tumour vascularization. Given that cells expressing mutations in the p53 gene have been observed in many forms of human tumour, it is important to understand how both wild-type and mutant cells react to hypoxic conditions.
View Article and Find Full Text PDFSixty-three samples of the more solid material (sludge) separated from the effluent plants of dairy factories were examined for the presence of salmonellas and brucellas. Salmonellas were isolated from two samples (S. heidelberg.
View Article and Find Full Text PDF