Silicon and Germanium oxide (SiO and GeO) nanostructures are promising materials for energy storage applications due to their potentially high energy density, large lithiation capacity (~10X carbon), low toxicity, low cost, and high thermal stability. This work reports a unique approach to achieving controlled synthesis of SiO and GeO nanostructures via photonic curing. Unlike conventional methods like rapid thermal annealing, quenching during pulsed photonic curing occurs rapidly (sub-millisecond), allowing the trapping of metastable states to form unique phases and nanostructures.
View Article and Find Full Text PDFDielectric capacitors present many advantages for large-scale energy storage, but they presently require higher energy density. We demonstrate novel high energy density polymer-nanoparticle composite capacitors utilizing thiol-ene click chemistry surface groups to bond the nanoparticles covalently to the polymer matrix. Interfacial effects in composites cannot be observed directly, and in our previous work, we examined the nanoparticle-polymer interface in silico.
View Article and Find Full Text PDFBiophysical insults that either reduce barrier function (COVID-19, smoke inhalation, aspiration, and inflammation) or increase mechanical stress (surfactant dysfunction) make the lung more susceptible to atelectrauma. We investigate the susceptibility and time-dependent disruption of barrier function associated with pulmonary atelectrauma of epithelial cells that occurs in acute respiratory distress syndrome (ARDS) and ventilator-induced lung injury (VILI). This in vitro study was performed using Electric Cell-substrate Impedance Sensing (ECIS) as a noninvasive evaluating technique for repetitive stress stimulus/response on monolayers of the human lung epithelial cell line NCI-H441.
View Article and Find Full Text PDFPurpose: The transcription factors ZEB1 and ZEB2 mediate epithelial-to-mesenchymal transition (EMT) and metastatic progression in numerous malignancies including breast cancer. ZEB1 and ZEB2 drive EMT through transcriptional repression of cell-cell junction proteins and members of the tumor suppressive miR200 family. However, in estrogen receptor positive (ER +) breast cancer, the role of ZEB2 as an independent driver of metastasis has not been fully investigated.
View Article and Find Full Text PDF