Publications by authors named "D B Bivin"

Many and diverse modifications of the myosin subfragment 1 (S-1) increase (modulate) its ATPase activity, including interaction of this particle with actin; a recent addition to these modifications is the extensive lysine modification of S-1 that seems prerequisite to crystallizing it for structure analysis. In this study we first established kinetically the ATPase modulations induced by various treatments of the myosin S-1 enzyme, and we also measured two properties of the S-1 active site--the affinity with which the site binds (a fluorescent analog of) the enzymatic nucleotide product and the access that a fluorescence quencher has to the bound ADP product--in an effort to get at the mechanism of modulation. Modulations achieved by substituting Ca2+ for the normal Mg2+ cocatalyst or by substituting Cl- for the normal carboxylate anion seem due to the product being held more loosely by the modulated enzyme.

View Article and Find Full Text PDF

A well-known indication that a nucleotide has bound to myosin is the enhancement of the fluorescence of a specific tryptophan in the "subfragment 1" segment of the protein. Empirically the effect has been enormously useful in myosin enzymology. But beyond an early suggestion that it arises from a purine-tryptophan charge-transfer complex, the mechanism of the effect has not been considered.

View Article and Find Full Text PDF

Newly-reported structural information about certain proximities between points on bound nucleotide and points on the heavy chain of myosin S-1 are incorporated into a previously-reported [Botts, J. Thomason, J.F.

View Article and Find Full Text PDF

We have incorporated Fe2+ into the high-affinity metal-ion-binding site of actin. By supplying the system with oxygen from air and a reductant (dithiothreitol or ascorbate), we have induced free-radical generation, with the intent of causing peptide cleavage at the metal-ion-binding site. By analysis of the resulting fragments from actin in the F-form, we have deduced that cuts occurred at positions 159-160 and 301-302 (at the latter location we could not be sure if more than one cut occurred).

View Article and Find Full Text PDF

It appears that small movements (detected hitherto only by fluorescence resonance energy transfer measurements and crosslinking studies) in a region of the myosin S-1 particle may mediate chemomechanical energy transduction in the contractile system. Here we find under conditions of high precision at 10 degrees C and 20 degrees C that ATP binding to S-1 causes small (0.4%) changes in CD signal, delta epsilon 222, as do temperature changes in the regime below 16 degrees C.

View Article and Find Full Text PDF