Mitochondria alterations are a classical feature of muscle immobilization, and autophagy is required for the elimination of deficient mitochondria (mitophagy) and the maintenance of muscle mass. We focused on the regulation of mitochondrial quality control during immobilization and remobilization in rat gastrocnemius (GA) and tibialis anterior (TA) muscles, which have very different atrophy and recovery kinetics. We studied mitochondrial biogenesis, dynamic, movement along microtubules, and addressing to autophagy.
View Article and Find Full Text PDFRed meat is probably carcinogenic to humans (WHO/IARC class 2A), in part through heme iron-induced lipoperoxidation. Here, we investigated whether red meat promotes carcinogenesis in rodents and modulates associated biomarkers in volunteers, speculating that an antioxidant marinade could suppress these effects via limitation of the heme induced lipid peroxidation. We gave marinated or non-marinated beef with various degrees of cooking to azoxymethane-initiated rats, mice, and human volunteers (crossover study).
View Article and Find Full Text PDFBackground: Muscle wasting is observed in the course of many diseases and also during physiological conditions (disuse, ageing). Skeletal muscle mass is largely controlled by the ubiquitin-proteasome system and thus by the ubiquitinating enzymes (E2s and E3s) that target substrates for subsequent degradation. MuRF1 is the only E3 ubiquitin ligase known to target contractile proteins (α-actin, myosins) during catabolic situations.
View Article and Find Full Text PDF